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A number of methods of solving inverse heat-conduction problems are analyzed from 
the point of view of their practical use. Problems of determining discrepancy 
gradients and obtaining smooth solutions are considered as applied to the method 
of iteration regularization. 

i. At the present time there exist two directions in the study of effects of heat and 
mass transfer, viz., the active development of methods of numerical modeling on the basis of 
equations expressing conservation laws, and continual improvement of experimental methods. 
If, in this connection, one considers the role of inverse heat-conduction problems (IHCP), 
they are important for both the first and second direction, and inverse problems particularly 
make it possible to extract quantitative information on the sources of characteristics appear- 
ing in the mathematical model of the effect (coefficients of equations, boundary conditions, 
etc.), and recover necessary data from experimental studies. 

Application areas of these methods are thermophysical and heat-technology studies in 
various fields of science, technology, industry, energetics, machine construction, aviation 
technology, metallurgy, etc. 

Obviously, it can be stated that IHCP methods underwent through their development stages 
of formulation of primary concepts, statement of problems and their solutions, as well as 
formulation of basic methods and examples of solving problems. The state-of-the-art in this 
area is characterized by a set of concepts and methods, which can be uncoupled as initial 
form of the theory and methodology of inverse problems. Further accumulation of abstract 
and concrete facts must lead to their union in a general theoretical system, based on unique- 
ness principles, rigorous mathematical studies of correctly stated problems, and further 
development of the IHCP algorithm apparatus. At the same time, one must carry out an all- 
rounded practical investigation of inverse problem methods, and clarification of the most 
rational applications. It must be stressed that contemporary IHCP methods are oriented to- 
ward using computational technology, and only in exceptional cases are "manual" treatments 
allowed. 

2. The concepts of direct and inverse problems always refer to mathematical model 
effects, separated by causal and consequential characteristics of the process investigated. 
In the direct problem the "consequence" results from the "cause," while in inverse problems 
this happens in the opposite direction. 

The abstract form of an inverse problem is represented by an operator equation of the 
first kind 

Au=f, uCU, fCF (1) 

with a given operator A: U + F and an element f, from which one seeks a solution u. 

A characteristic feature of inverse problems is that the operator A has no bounded in- 
verse, i.e., problem (i) is incorrect. 

One possibility is the parametrized statement of the inverse problem, for example, 
when the quantity u(x) is sought in the form 

l 

u (x) = ~ ai~ z (x), 
i.-~l 

(2) 
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where {~i(x)}{ is a system of basis functions and a. are unknown coefficients. 
I 

An example of representation (2) can be the approximation of a solution by B-splines. 

In this case the inverse problem reduces to determining the vector a={ai}~ . 

One must mention the lasting delusion that in transforming to a parametrized identifica- 
tion form (unlike the more general case of functional identification) the difficulties 
associated with obtaining a stable solution are eliminated. The use of a similar form in 
the general case leads to the result that due to its original incorrectness the finite- 
dimensional analog of the problem is badly conditioned, and also requires the development of 
special algorithms of finding an approximate solution, stable with respect to small changes 
in the original data. One method of constructing similar algorithms for the spline approxi- 
mation can be the natural step regularization. In this case stability of the solution is 
achieved by a choice of the partitioning step of the region of determining the unknown func- 
tion, larger than the quantity for which the conditioning of the problem improves so much 
that the error in the right-hand side has a comparatively small effect on the solution [1-4]. 
Naturally, this approach has restrictions related to the worsening of results with the 
necessary coarsening of the computational grid. 

A quite general method of solving ill-posed problems is the regularization method of 
Tikhonov [5, 6], and among the principles of constructing regularized algorithms the most 
widely spread is the variational principle [5-8], being widely used in IHCP solutions [i, 9]. 
Also used are other methods of obtaining stable solutions, among which use was found for 
inverse problems by the already-mentioned method of natural step regularization of approxi- 
mately analytic and difference-shaped solutions, as well as the iteration regularization 
method suggested in [i0, ii]. 

All these approaches were investigated by us in sufficient detail, as applied to solving 
both linear and nonlinear IHCP, and were compared with each other in various practical situa- 
tions. As the studies performed have shown in the present case, the conditions of rational 
practical application of methods of solving IHCP can be generalized in the form of Table i. 
Five approaches to algorithmization of solutions of IHCP, making it possible to obtain stable 
results, are summarized in it. These methods are systematically discussed in [i] (the direct 
approximate-analytic and numerical methods in Chaps. 4 and 5, the iteration regularization 
method in Chap. 6 and Sec. 7.6, and algebraic and numerical methods, regularized according to 

variational principles, in Chap. 7).* 

From analyzing this table one can draw the conclusion that among the approaches con- 
sidered to solving inverse problems the most universal is the method of iteration regulariza- 
tion, based on gradient algorithms. Due to a number of obvious qualities this method has 
been applied by us very widely, so that, finally, it does not exclude the application of 
other methods, which can be more rational in other cases. 

3. We discuss briefly the essence of the given approach and several results obtained 

in developing this direction recently. 

Instead of (I) we consider the extremal analog, more precisely, the minimization problem 
of the norm of the deviation of the left-hand side of the equation from the right-hand side 

in the metric of the space F: 

J (u) = llAu - -  f l l~ ,  ( 3 )  

and as F we take the space of square integrable L2-functions. This approach does not render 
the problem correct, but, as it turns out, one can construct an effective regularizing al- 
gorithm of its solution, based on an iteration process 

uJ+~ :-- FA (ui, 5 h ,  i = O, 1 . . . . .  

when the iteration number is considered as a regularization parameter (here 6f is the error 

in the given element f). 

*In the present paper we are not concerned with other algorithms and methods of solving 
IHCP, which can be found, in particular, in [12-17]. 
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TABLE i. Conditions of Rational Application of Methods of 
Solving IHCP 

Condi t ion  I I I I I I IV V 

Feature o f  lHCP 

Linear with cons tan t  
thermophys iea l  charac ter i~  
tics (TFC) 
Nonl inear  or linear wi th  
varying TFC 

Homogeneous  equat ion  o f  
thermal  conduc t iv i ty  

Generalized equa t ion  of  
thermal  conduc t iv i ty  

Immobi le  body  boundar ies  

Mobile b o d y  boundar ies  

Fixed thermal  de tec tor  

Mobile thermal  de tec tor  

One-dimensional  

Two-dimensional  

Overdetermined 

General apt?liea- 
bility conditions 

Determina t ion  o f  thermal  
loads 

Calculat ion of  t empera tu re  
fields 

Heat  exchange (TP) slowly 
varying in t ime 

Quickly varying and 
shorMived TP 

Low- tempera tu re  TP 

High- tempera ture  TP o f  
substant ia l ly  vary ing  
in tensi ty  

L o w  thermal  depth  o f  
thermal  de tec to r  

High thermal  dep th  o f  
thermal  de tec tor  

Construct ive metallic 
elements  

Thermal  shielding and 
isolation 

Conditions o f  
practical realization 

Complica t ion  o f  a lgori thm 

Cost of  machine  t ime 

Calculated in a real t ime 
,cale 

Stabil i ty restr ict ions on the 
magni tude  o f  calculated 
~teps 
Prel iminary smoo th ing  
o f  inpu t  da t a  for  high 
error  levels 

Yes 

No 

Yes 

No 

Y e s  

In the  one~ 
dim ensional 

case 
Yes 

No 

Yes 

For  regions of 
s imple  shape 

No 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 
s 

No 

Sim pie 

Small 

I 
Quite rigid Rigid 

Necessary 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 

No Yes 

Yes Yes 

Yes Yes 

Yes Yes 

No Yes 

Yes Yes 

Yes Yes 

Yes Yes 

No Yes 

Yes Yes 

For  a mater-  I Yes 
ial wi th  high 
thermal  condo 

Average compl ica t ion  

Small ,  [ 

average 

Possible 

Yes 

No 

Yes 

No 

Yes 

In the one- 
dimensional  

case 
Yes 

No 

Yes 

For  regions ofi 
simple shape 

No 

Yes 

No 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Substant ial  
complicat io  n 

Average 

Absent  

I 
N o t  necessary 

t 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Compl ica ted  

Large 

Im possible 
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TABLE i (continued 

Condition 

Obtaining a required degree 
of smoothness of  results 

�9 Account of  quantitative 
a priori information on 
solutions 

Conditions of  computer 
realization 

Computer  

Hybrid computer  system 
(HCS) 

I 
J 

Im possible 

I I  I I I  IV 

Possible 

V 

tmpos  

Yes 

No 

ible 

�9 Yes 

For implicit 
difference 
scheme 

I Possible 

Yes 

Yes 

Difficultly realizable 

Yes Yes 

Yes Yes 

Note: I) direct approximate-analytic method; II) direct 
numerical method; III) method of iteration regularization; 
IV) regularized algebraic method; V) regularized numerical 
method. 

The methods of steepest descents, minimal discrepancies, and associated gradients were 
investigated as iteration algorithms. It has been established that if the iteration number 
is chosen from the discrepancy criterion lJAu--f[]2_~62 , then these methods make it possible to 

obtain stable and quite accurate approximations to the required solution of an incorrect prob- 
lem. Numerical modeling, based on solving numerous model examples for various IHCP types, 
as well as problems of smoothing and differentiating functions given with errors have shown 
the correctness and effectiveness of this approach both for linear and nonlinear problems. 
As applied to linear inverse problems, i.e., to the case of a linear operator A, the given 
method is rigorously justified. Theorems on conditional regularization of iteration algorithms 
and stability of approximations in gradient methods in using discrepancy criteria were given 
in [18, 19]. Conditions were established in [20], according to which one infers from the 
validity of the discrepancy criterion for a given iteration algorithm F A the validity 

of generalized discrepancy criteria, and generalized discrepancy criteria were also justified 
for simple iteration and reconstruction methods. 

We dwell further on two important problems of applying the method of iteration regulari- 
zation: the determination of the J'-gradient of the functional (3), and the development of u 
algorithms taking into account the smoothness of the defining functions (vector-functions). 

4. A numerical method of calculating a gradient, based on the difference approximation 
of partial derivatives with respect to separate components, is widely used in computational 
practice in solving correct problems (it is assumed that a parametrization procedure of the 
unknown functions is carried out). This approach is not only accompanied by substantial expen- 
diture of computer time, but is also undesirable for the reason of large errors. Also un- 
suitable for calculating the gradient is another well-known method, based on sensitivity 
functions. This is related to the immense computational bulk, since the method assumes that 
one has solved a boundary-value problem (for example, the problem for the heat-conduction 
equation), whose dimensionality is that of the vector of unknown parameters. 

As studies have shown, more effective algorithms of determining the discrepancy gradient 
can be obtained if the following exact representation is used to calculate J': 

U 

J: = 2 (A')* (Au - -  f), 

where A' is the Fr~chet derivative of the operator A, and (A')* is the operator conjugate to 
A' (if Eq. (i) is linear, then (A')* = A*). Two cases are possible here: 

i) when the operator A is a linear integral operator, and one easily and explicitly 
constructs for it the conjugate integral operator (in particular, a similar situation arises 
in solving linear IHCP boundary-value problems [i]); 

2) when to find (A')* one uses the solution of the boundary-value problem conjugate to 
the problem for the increment of the unknown function (vector-function); the method of 
deriving the conjugate problems can be justified by considering the necessary conditions of 
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extremum of the increment functional (3) in the form of vanishing of the total variation of 
the extended functional [21]. 

The methods mentioned of finding the gradient possess the following important features: 

universality, they are valid for solving inverse problems of any type and in various 
contexts, not only for a parametric form of identification, but also for functional 
identification; 

high accuracy, in calculating J' there are practically only approximation errors, u 
which can be made negligibly small; 

economy, for example, if J' is found in terms of the solution of the conjugate problem, u 

then independently of whether functional or parametrized identification is used, and 
independently of the dimensionality of the vector sought (or vector-function), at each 
iteration it is required to solve the conjugate problem only once in calculating the 
gradient. 

We note that the second method is applicable both to linear and nonlinear IHCP. The 
conjugate problems for various boundaries and coefficients of inverse heat-conduction prob- 
lems and inverse heat-conduction problems in technological systems, as well as the corres- 
ponding expressions for the gradients of the mean-square functionals are given in [i, i0, 
ii, 21-26]. 

5. An equation is given below for the gradient of the discrepancy functional for the 
iteration solution of the new boundary-value inverse heat-conduction problem, in whose 
statement there is no initial temperature distribution (in a number of given conditions). 

In the one-dimensional case we formulate this problem as follows: find the temperature 
field T(x, T) in the region ~={(x, T) :0~x<d, 0~T~Tm} from known boundary conditions of 

the fourth kind at the point x = d 

T(d,  x ) = f ( ~ ) ,  - -X  OT(d, ~) 
Ox -- q (*)' (4) 

assuming that the function T(x, T) satisfies the heat-conduction equation 

Stated this way, the problem is called a noncharacteristic Cauchy problem for Eq. (5). If 
the coefficients C and % are functions of x, T and are independent of temperature, the heat- 
conduction equation can be written in the form 

OT _ a(x, ~) OzT OT 
&'~ Ox ~ +. b(x, ~) Ox (6) 

Here 

1 0;~ 
a (x, ~) -- -~- > 0, a (x, ~) -- -- 

C ax 

For classical shapes of problem (6), (4), when the coefficients of the equation are 
analytic functions of x, T, the input data f(T), q(T) and the field sought T(x, T) also 
belong to the class of analytic functions, and the uniqueness of the solution follows from 
the Kovalevskii theorem. For substantially less restrictive requirements, more precisely 

when T(x, T)6C 2 , the Cauchy data [(T), q(~)~C I, and the coefficients satisfy the conditions 

a(~ T) 6C 2 and b(x, T) is a bounded function, then the uniqueness of the solution follows 

from the uniqueness theorem of the noncharacteristic Cauchy problem for the general n-th- 
order parabolic equation, proved in [27]. In what follows we refer to this result, and 
assume that ~ is located inside a region for which the uniqueness of the solution of the 
problem has been established. 
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The inverse problem (6), (4) on the extension of the temperature field from Cauchy data 
is reformulated in the following variational form: considering as variational functions the 
boundary temperature T,,,(T)=T(O, T),~6[O, ~] and an initial distribution ~(x)=T(x,O), x~[O, d], 

find by the iteration regularization method a pair (Tw, ~), for which the discrepancy func- 
tional 

T~ 

J[T~(z),  $ ( x ) l =  f [T(T~, ~, b, ~)--[(~)]Zdv (7) 
6 

acquires a value equal to the integral error ~2 of the given function f(T). In this case the 
direct problem of thermal conductivity is solved at each iteration for the known approxima- 
tions for Twj (T) and ~j (x), with the second boundary condition on the heat flux density q(T) 

(assumed in the given case to be a known function). The unknown field T(x, T) in the region 
is calculated from the quantities found T (T), ~(x) and the given q(T). 

W 

We note that in the formulation suggested the original Cauchy problem reduces to the 
extreme statement of the boundary-retrospective IHCP (according to the terminology proposed 
in [1] ). 

According to the uniqueness conditions of the solution of problem (6), (4) it is neces- 

sary to seek, among the functions, T(x, ~)6C 2 ; therefore the varying quantities Tw(T) and ~ (x) 

refer to this class. Moreover, we assume that they belong to the space of W~-functions, 

having generalized derivatives up to third order, and being square-integrable (it is well- 

known that W 3a ~ C a ) . Thus, to apply the gradient minimization method with account of the 

restrictions it is necessary to find the gradient of the functional (7) with respect to 

, T 3 W3 the vector-function u= [Tw(~), r where ~2[0,*m], ~ 2 [0, d] �9 In solving this problem 

it is necessary to have agreement between the unknown functions Tw(T), r and the given 

boundary conditions, in particular, it is necessary to satisfy the equalities 

t ~  (0) = ~ (0), ~ (d) = f (0), - -  ~ '  (d) = q (0). 

In Sec. 6 below, a procedure is suggested for determining the gradient in the W~-space 

from the gradient known in the L2-space. Consequently, it is initially necessary to solve 
the basic problem, that is to construct the gradient J' for Tw6L2[0,~m] ~6L2[0, d]. For this 

' U 

purpose we use the method of the conjugate boundary-value problem. 

Not dwelling on details, we provide the final results. The conjugate problem sought is 

0r _ O~ (ar 0 (be) 
& Ox ~ Ox 

xC(0 ,  d), "~C[0, ~,~); 

, (x, -~,~) = o; , (0, "0 - o; 

0 
- -  b (~, T) r (d, ~) + ~ [a (d, ~) r (d, ~)1 = 2 IT (d, , )  - -  I (~)l. 

The gradient of the functional is expressed in terms of the function ~ as follows: 

a [a(O, -~)r "Ol. ]$ = ~ (x, 0), JT~, = - -  b (0, 7) '~ (0, -c) ~- -~x 

After calculating from these data the gradient in the W~ space with account of the self- 
consistency mentioned it is possible to organize in parallel two iteration processes for 
finding the quantities TwCW~[0, ~m], ~W~[0, d]. 

6. It is well known that the quality of solution of an ill-posed problem can be im- 
proved substantially if one includes in the algorithm the a priori given smoothness of the 
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dominant functions. An approach was suggested in [i, 28] and further developed in [29] to- 
ward finding smooth solutions within the method of iteration regularization. According to 
this approach, to solve problem (i) by the gradient method one constructs an iteration se- 
quence, in which the direction of descent is selected in the original space U = L2, in such 
a manner that the approximations obtained belong to the class W~. A new form of finding 
smooth solutions is suggested below, when the iteration sequence is obtained directly in 
the space U = W~. 

We assert that the required function u(x) belongs to the Sobolev space of W}[a, b]- 
functions, square integrable along with their derivatives up to the k-th order, where the 
derivatives are understood in the sense of generalized functions. It is well known that in 
this case the function u(x) is continuously differentiable (k -- i) times on the [~, b] seg- 
ment, and has almost everywhere in it an ordinary k-th derivative, while the derivative 

( k - I )  
u (x) is absolutely continuous on [a, b]. 

Let u(x) acquire a small increment O(x)EW~ Then the linear part of the corres- 
ponding increment of the functional J is expressed in terms of the scalar derivative in the 
W~ space of the element e and of the gradient J'wak in this space 

where 

A: : (o, :$-~ )<~, (s) 

, ~ b d ' V ~  d~O dx. 
I ~ 0  a 

The q u a n t i t i e s  r = r (x)  a r e  g i v e n  n o n n e g a t i v e  c o n t i n u o u s  f u n c t i o n s ,  p l a y i n g  t h e  r o l e  
n n 

o f  w e i g h t s  ( i n  p a r t i c u l a r ,  r n  can  b e  c o n s t a n t ) ,  w h i l e  r o ,  r k > 0 .  

S e q u e n t i a l l y  a p p l y i n g  i n t e g r a t i o n  by  p a r t s ,  t h e  s c a l a r  p r o d u c t  (8)  c a n  be  t r a n s f o r m e d  
t o  a f o r m  i n  w h i c h  t h e  f u n c t i o n  0 ( x )  u n d e r  t h e  i n t e g r a l  s i g n  i s  f r e e  o f  d i f f e r e n t i a t i o n  ( i t  
i s  a s s u m e d  h e r e  t h a t  J~,k(X) and r (x )  p o s s e s s  t h e  r e q u i r e d  c o n t i n u o u s  d e r i v a t i v e s ) :  

n 

(o, 
c7 ~ = 0  

(9) 
h d,~ / d ~ ,. 

We introduce the linear differentiation operator L2h ~(--])" i --d~-x~ ) = -- r~ and for simpli- 
n=0 dx'~ 

city we assign the following boundary conditions on the segment [a, b]: 

h 

/\( d' J{r) t }f O, n 1, k. s  
( - -  i)/+~ - -  ri = = (io) 

d x ~ - n  d x  ~ : x=a;b i - - n  

We then obtain from (9) 

Taking (8) into account, we arrive as a result at the differential equation 

1)- = Ji (x), xC( , b), 
~ o  dxn  d x n  J 

w h i c h  i s  s o l v e d  w i t h  a c c o u n t  o f  t h e  b o u n d a r y  c o n d i t i o n s  ( 1 0 ) .  

T h u s ,  a c o n v e n i e n t  f o r m  was  o b t a i n e d  f o r  t r a n s i t i o n  f r o m  t h e  known g r a d i e n t  o f  t h e  f u n c -  

t i o n a l  i n  t h e  L2 s p a c e  t o  t h e  g r a d i e n t  o f  t h i s  f u n c t i o n a l  i n  t h e  W~ s p a c e .  K now ing  JW2 k one  

can  c o n s t r u c t  an a p p r o x i m a t i o n  p r o c e s s  by  t h e  m e t h o d  o f  i t e r a t i o n  r e g u l a r i z a t i o n ,  p r o v i d i n g  

a r e s u i t  u ( x )  w i t h  a c e r t a i n  d e g r e e  o f  s m o o t h n e s s .  F o r  e x a m p l e ,  f o r  t h e  s t e e p e s t  d e s c e n t  
m e t h o d  t h e  i t e r a t i o n  p r o c e s s  
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ui+ ~ u1 'i �9 = - - ~ / w h ,  ~ i -  "] 2 2 JlAJw~]l~= ( l l )  

with residual discrepancies (i.e., by the condition ]IAui*--[6!It, _~_ 5 ) gives the result ui~-+u 

, W k for 6 § 0 where u E 2 is the solution of problem (i) for exact data. In this case the 

initial approximation must be selected from the class of functions of corresponding smooth- 

ness: u~ b], p~k , in particular, one can put u~ = 0. 

It is important to note that if the iteration method of regularization is used to deter- 
mine some vector-function (for example, when the density of thermal fluxes is sought on two 
boundaries of the body, or some coefficients in the heat-conduction equation are required, 
or boundary and initial conditions, as in the problem considered in Sec. 5), the descent 
step is advisably considered as a vector, having a dimensionality corresponding to the num- 
ber of dominant quantities [30]. In this approach the accuracy in the solution of the prob- 
lem is substantially improved. 

7. in conclusion, we note that the method of iteration regularization on the basis of 
gradient algorithms possesses invariance properties with respect to solving inverse problems 
of various types, boundary value, coefficient, retrospective and geometric inverse heat- 
conduction problems, inverse problems of heat and mass transfer, inverse heat conduction 
problems in technological systems, combined inverse problems, inverse problems in redefined 
statement, as well as optimization problems of project parameters of heat technology systems. 
Corresponding algorithms are suitable for creating an applied mathematical tool of handling 
experimental data in automated systems of scientific studies and systems of automated projects. 
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SOLUTION OF THE TWO-DIMENSIONAL INVERSE HEAT-CONDUCTION 

PROBLEM IN A CYLINDRICAL COORDINATE SYSTEM 

N. V. Kerov UDC 536.24 

The two-dimensional inverse heat-conduction problem is considered. An algorithm of 
the solution and the results of a trial computation are presented. 

Modern thermophysical investigation methods, thermal design, and experimental checkout 
of thermally stressed systems utilize the principles of inverse problems extensively, which 
have been recommended well in recent years. The high efficiency of methods to investigate 
heat-transfer processes which are based on the solution of inverse problems, especially in 
combination with the automated collection and processing of results, resulted in the develop- 
ment of inverse problems in an independent scientific aspect [I]. 

Different formulations of inverse heat-conduction problems (IHCP) exist at this time. 
Depending on the purpose, linear and nonlinear IHCP are utilized. Here one-dimensional 
heat-conduction models are mainly considered. 

The selection of the one-dimensional models is based on those cases when a hypothesis 
on one-dimensional heating canbe taken. This hypothesis is valid for many heat-protection 
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